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SUMMARY

In case-control studies one may employ logistic regression to model the relationship between binary
responses and continuous predictor variables that have been categorized by the empirical quartiles of
the controls. Sometimes, however, systematic trends over time (or drifts) contaminate the laboratory
measurements of predictor variables. In this paper we consider the use of locally weighted robust
regression (lowess) to estimate and remove these systematic trends when the trends for the cases and
controls have a common shape. One can then use the lowess adjusted data in the desired logistic
regression model. We illustrate these methods with a case-control study that was designed to assess the
risk of oesophageal cancer as a function of the quartile categories of sphinganine levels in the blood
serum. Upon examination of the data, it was discovered that the sphinganine laboratory measurements
were contaminated by a systematic trend, the magnitude of which depended only on the day of analysis.
This trend needed to be removed before performing further analyses of the data. In addition, we present
simulations to examine the use of lowess methods to estimate and remove various shapes of trends from
contaminated predictor data before constructing logistic regression models with quartile categories. We
found that using the trend-contaminated data tends to give attenuated parameter estimates and hence
lower signi�cance and power levels than using the uncontaminated data. Conversely, using appropriate
lowess methods to adjust the data tends to give nearly unbiased parameter estimates, near nominal
signi�cance levels, and improved power. Published in 2003 by John Wiley & Sons, Ltd.

KEY WORDS: cancer; laboratory measurement drift; lowess; measurement error; quantile-category;
trend removal

1. INTRODUCTION

In case-control studies we may employ logistic regression to model a binary response, yi (for
example, disease status), as a function of a continuous predictor variable, xi, where i indexes
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the subjects. In some situations we may categorize this predictor variable by the empirical
quartiles of the control measurements, {xi |yi=0}, to create four new variables, {qj(xi)}, such
that qj(xi)=1 if measurement xi falls in the jth quartile category and 0 otherwise (j=1; : : : ; 4).
Ideally, one would then �t the logistic regression model logit(P{Yi=1})=�0 +�4j=1 �jqj(xi).
This approach is particularly desirable because it allows for non-linear relationships between
the predictor quartile categories and the response.
Next, let ti denote the time of measurement for the ith subject. Unfortunately, when the

true predictor variable is contaminated by a systematic trend over time (or drift), �(t), one
cannot use the logistic regression model logit(P{Yi=1})=�0 + �4j=1 �jqj(xi + �(ti)) because
the de�nitions of the quartile categories themselves depend on the trend-contaminated data,
and thus the trend becomes inextricably tied to the predictor variables; neither can one use
the conditional logistic regression model [1] logit(P{Yi=1})= �k +�4j= 1 �jqj(xi+ �(ti)), with
strata for the time-unit of analysis {�k}, for the same reasons. Rather, one must �rst estimate
and remove this trend before one constructs the quartile categories, and then one may perform
the desired logistic regression analyses. Note that similar problems would arise for other non-
linear functions of the continuous predictor variable (for example, quadratic terms) and for
other non-linear link functions (for example, the probit link).
Consider the following motivating example. The General Population Trial (GPT), conducted

in Linxian, China, was a large-scale randomized placebo-controlled trial designed to evaluate
the e�ects of multiple mineral and vitamin supplementation on the risk of oesophageal cancer
[2, 3]. Prior to baseline (March 1986), blood samples were drawn from all 29 584 subjects and
frozen for future use. After 5.25 years of follow-up (May 1991), the subjects were classi�ed
as to case or control status. Subsequently (1997), researchers at the U.S. National Cancer
Institute designed a case-control study nested within the larger prospective cohort from the
GPT to determine whether sphingolipids, including sphinganine (Sa), are useful predictors of
the risk of oesophageal cancer [4]. Sphingolipids have been measured in the blood serum and
urine, and their concentrations may serve as biomarkers for exposure to fungal toxins from
the consumption of contaminated corn and wheat [5, 6].
In this nested case-control study, the designers strati�ed the subjects by three age categories

(30–50, 51–60 and 61–69 years old at baseline) and two genders (male, female), in order to
create six age-by-gender strata. They then selected about 17 oesophageal cancer cases and 34
controls from each of these six strata; thus the cases and controls were frequency matched,
but not individually matched. Owing to the loss of samples and other chance occurrences,
however, blood samples for only 98 cases and 182 controls were ultimately available for
laboratory analysis. In preparation for analysis, the case blood samples were placed in a
random order, and then two control samples from the same stratum as each case sample were
placed nearby. These samples were subsequently coded to blind their identities and shipped to
an o�-site laboratory for the measurement of the serum Sa levels by high performance liquid
chromatography (HPLC) analysis. Each sample was measured up to twice and the averages
of the measurements were calculated.
Figure 1 shows a plot of the natural logarithm of the Sa measurements (ln-Sa) for the

controls (circles) and cases (squares) by day of HPLC analysis. We observe several striking
features in this plot. First, we note that the HPLC measurements were made on days 1–4
and 19–57. The gap from days 5 to 18 corresponds to a period in which the laboratory was
adjusting its HPLC system. Furthermore, several outliers occur on days 23 and 24. Second,
the measurements for the cases and controls have an apparent trend over time, contrary to
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Figure 1. Plot of trend-contaminated ln-Sa measurements versus day of HPLC analysis. This �g-
ure shows the scatter plot of the trend-contaminated ln-Sa measurements (in ln-nanomols=litre)
for the controls (circles) and cases (squares) by day of HPLC analysis (day 1=9=23=97 to day
57=11=18=97). It also shows the lowess estimated trends using a data-fraction of f=2=3 for
both the controls (solid line) and cases (dashed line). The means and standard deviations of the
ln-Sa data for the controls are 4:00 ± 0:96 and for the cases are 3:87 ± 0:92, and the empirical

quartiles of the controls are 3.36, 3.90 and 4.65 (interquartile range, IQR=1:29).

the expectation that these measurements should be both independent of time and identically
distributed.
We next used locally weighted robust regression [7] (lowess) to estimate the mean trends in

the ln-Sa measurements for the cases and controls. Lowess methods provide a non-parametric,
robust local smooth of the scatter plot data using a tricubic weight function. The smoothness
of the �t increases as the fraction of the data, f∈ [0; 1], used to compute the mean at each
abscissa value, increases. A smaller data-fraction gives a more local smooth, and thus �ts �ner
features in the data, while a larger data-fraction gives a less local smooth, and thus reveals
global features. We used the S-Plus 2000 programming language [8], including the prede�ned
function lowess, for all calculations in this paper. Figure 1 also shows the lowess estimated
trends using the default data-fraction of f=2=3 for both the controls (solid line) and cases
(dashed line). The observed trends for the cases and controls are quite similar in location and
shape. Both trends rise sharply from day 1 to day 19 and then decrease more gradually to
day 57. Note that the analyses that we describe below depend only upon the shapes of curves
in the regions where data are present, and not on gaps or areas of interpolation.
The laboratory scientists suggested that the common trend was due to a chemical contam-

inant that eluted from the HPLC column at the same time as the Sa. They believed that
this trend depended only on the day of HPLC analysis and thus was independent of the Sa
measurement levels. Unfortunately, the laboratory standards contained such high levels of Sa
that they did not detect this trend. Likewise, the quality control samples, constructed from
blood samples pooled more recently from a Linxian bloodbank, contained signi�cantly higher
levels of Sa than the samples in the case-control study (perhaps due to better preservation or
seasonal variation in Sa levels), and hence did not accurately detect this trend either. Thus,
there are no independent estimates of the observed trend.
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We wished to make inference to the risk of oesophageal cancer as a function of the quartile
categories of Sa levels among the population at large. Ideally, we would construct logistic
regression models for the risk of oesophageal cancer as a function of the quartile categories
de�ned by Sa data for the controls only, plus other subject covariates. Therefore, in order to
be able to perform the desired analyses, we employed lowess methods to estimate and remove
the observed trend from the Sa data for the cases and controls themselves.
In Section 2 we develop models for case-control studies in which the laboratory analysis of

the predictor variable takes place over signi�cant time periods. We �rst describe a logistic re-
gression model with the predictor variable de�ned by the quartile categories of the controls of
the uncontaminated (true) predictor data. We then describe models for the trend-contaminated
data, the estimation and removal of the trend by lowess methods, and the corresponding logis-
tic regression models for the trend-contaminated data and the lowess adjusted data. In Section
3 we analyse the motivating example in light of these models. Next, in Section 4 we describe
a simulation study designed to compare the statistical properties of these models. Finally,
in Section 5 we discuss the broader implications of using lowess methods to estimate and
remove trends from contaminated data in case-control and other studies.

2. MODELS FOR PREDICTOR VARIABLES IN CASE-CONTROL STUDIES

2.1. A model for the uncontaminated (true) data

We now describe a model for the analysis of a case-control study by logistic regression with
quartile categories of a continuous predictor variable measured over time. First, let n0 denote
the number of controls, let n1 denote the number of cases, and let n= n0+n1. We also assume
that there is no matching between the cases and controls. Next, let yi denote the response
variable, coded as yi=0 or 1 if the ith subject is a control or case, respectively (i=1; : : : ; n).
Now, let x truei denote the uncontaminated (true) continuous predictor measurement for the

ith subject. For simplicity, we will not consider any other covariates. Next, using the indi-
cator function I{:}, let F̂ true(x)= n−10

∑n
i=1 I{x truei 6x; yi=0} denote the empirical distribution

function of the uncontaminated data for the controls, {x truei |yi=0}. Then, let u true� denote the
empirical �-quantile of the uncontaminated data for the controls, namely

u true� = inf{x | F̂ true(x)¿�} (1)

By convention, set u true0 =−∞ and u true1 =+∞. In turn, we can de�ne the indicator variables
for the four quartile categories (j=1; : : : ; 4)

q trueij =1 if u true( j−1)=4¡x
true
i 6u truej=4 for the ith subject and 0 otherwise (2)

Note that quantile categories are invariant to monotonic increasing (almost everywhere)
transformations of the underlying continuous data. Now, let logit(p)= loge(p=(1−p)) denote
the logistic link function and let P{Yi=1} denote the probability that the ith subject is a case.
We �rst consider the following logistic regression equation:

logit(P{Yi=1})=�0 +
4∑

j=1
�jq trueij (3)
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By convention, �1= 0. Thus, each of the �j should be interpreted with reference to the �rst
quartile category. For example, this model implies that the odds of being a case are exp(�4)
times as large for individuals with the x-predictor in the fourth quartile category as for those
with the x-predictor in the �rst quartile category. The likelihood ratio test (LRT) for the
inclusion of the quartile categories tests the null hypothesis that H0 :�2 =�3 =�4 = 0 against
the alternative that H1 :�j �=0 for at least one j (j=2; 3; 4) based on three degrees of freedom
(d.f.).
Finally, let d denote the number of days (or other time-unit) over which the measurement

analyses of the predictor variable take place, and let ti ∈ [0; 1] denote the fraction of the total
time at which the ith subject’s measurement analysis occurs. Ideally, the same number of
controls and cases should be analysed on each day in order to avoid confounding between
case-control status and time of analysis.

2.2. Models for the trend-contaminated data and the lowess adjusted data

We now consider models for the construction of the trend-contaminated data and the use of
lowess methods to estimate and remove trends in order to compute the lowess adjusted data.
We also de�ne logistic regression models corresponding to (3) for each of these variables.
Let �(t) denote a generic trend function of the time-fraction t on the closed interval [0; 1].
We assume that this trend function is completely independent of the true data. The addition
of this systematic trend to the true data {x truei } creates the trend-contaminated data

x trendi = x truei + �(ti) (4)

Next, we can use standard lowess methods with data-fraction f to estimate the trend from
the contaminated data, {x trendi }. First, we can simply estimate the trend from the measure-
ments for the controls only, {x trendi |yi=0}. Second, when the numbers of cases and controls
are (nearly) balanced on each day of analysis, we can estimate the trend from the measure-
ments for the cases and controls combined, {x trendi }, that is, using the complete data set. This
second method essentially produces a weighted average of the respective lowess curves for
the cases and controls. More generally, when the numbers of cases and controls are unbal-
anced, one can use advanced versions of lowess methods, such as those given by the S-Plus
function loess [8], with an indicator variable for case-control status, to construct a weighted
estimate of the common trend. The lowess estimated trends from these data are denoted by
�̂c(t |f)(c= controls only) and �̂b(t |f) (b=both cases and controls), respectively. In turn,
we obtain the following two new variables by removing the trend:

xlowci = x trendi − �̂c(ti |f)= x truei + �(ti)− �̂c(ti |f) (5)

and

xlowbi = x trendi − �̂b(ti |f)= x truei + �(ti)− �̂b(ti |f) (6)

Note that for a satisfactory estimator �̂(t |f), the curve �(t)− �̂(t |f) should be nearly constant
over time with unknown mean near − �x truei , and hence the lowess adjusted data {xlowci } and
{xlowbi } should have means near zero. Thus, the process of trend estimation and removal loses
information about the absolute values of the uncontaminated measurements. Nevertheless, this
process ideally recovers information about the relative di�erences between the uncontaminated
measurements, which is su�cient in order to construct the quartile categories of the data.
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Next, we can use the variables {x trendi }, {xlowci } and {xlowbi } to de�ne the empirical quartiles
{u trendj=4 }, {ulowcj=4 } and {ulowbj=4 }, respectively, as in equation (1). In turn, we can use these em-
pirical quartiles to de�ne the indicator variables for the four quartile categories (j=1; : : : ; 4)
{q trendij }, {qlowcij } and {qlowbij }, respectively, as in equation (2). Finally, corresponding to the fun-
damental logistic regression (3), we can use each of these three new sets of variables to write

logit(P{Yi=1})=�0 +
4∑

j=1
�jq trendij (7)

logit(P{Yi=1})=�0 +
4∑

j=1
�jqlowcij (8)

and

logit(P{Yi=1})=�0 +
4∑

j=1
�jqlowbij (9)

Again, by convention, �1 = 0. We expect that the use of equation (7), with the trend-
contaminated data, will give estimates of {�j} that are attenuated towards zero. Hence, the
LRT will have low power for testing the null hypothesis of H0:�2 =�3 =�4 = 0: Conversely,
we hope that the use of equations (8) and (9), with the lowess adjusted data, will give less bi-
ased estimates of {�j}, which will in turn give near nominal signi�cance levels and improved
power.

3. ANALYSIS OF THE OESOPHAGEAL CANCER CASE-CONTROL STUDY

3.1. Estimation and removal of the observed trend in the Sa measurements

In the analysis of the motivating example, we examined the nature of the common systematic
trend in the Sa measurements for the cases and controls in order to estimate and remove
it. We �rst constructed a series of regression models to determine whether the observed
trend in the ln-Sa measurements might be due to an unlucky randomization of the sample
orders and thus explained by a covariate confounded with the day of HPLC analysis. In these
regression models, we regarded the ln-Sa measurements as the response and the age and gender
strati�cation variables and other patient covariates available from the GPT (such as smoking,
drinking, cholesterol and nutritional intervention treatment group) as predictor variables. None
of these variables explained the systematic trend over time in the ln-Sa measurements.
Next, we used lowess methods with a data-fraction of f=2=3 to estimate the systematic

trend in the ln-Sa data. We also experimented with other possible data-fractions and obtained
comparable results. To maximize the e�ciency of estimation, we used both the cases and
controls combined to estimate the common trend. We then subtracted the lowess estimate of
the trend from the contaminated ln-Sa data to obtain the lowess adjusted ln-Sa data.
Figure 2 shows a plot of the lowess adjusted ln-Sa measurements for the controls (circles)

and cases (squares) by day of HPLC analysis. It also shows the trends in the lowess adjusted
data, estimated by lowess using a data-fraction of f=2=3, for both the controls (solid line) and
cases (dashed line). We observe that both trends are approximately horizontal, as expected,
with means near zero. Recall that while the lowess adjusted data loses information about
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Figure 2. Plot of lowess adjusted ln-Sa measurements versus day of HPLC analysis. This �gure shows
the scatter plot of the lowess adjusted ln-Sa measurements (in ln-nanomols=litre) for the controls (circles)
and cases (squares) by day of HPLC analysis (day 1=9=23=97 to day 57=11=18=97). It also shows
the lowess estimated trends using a data-fraction of f=2=3 for both the controls (solid line) and
cases (dashed line). The means and standard deviations of the lowess adjusted ln-Sa data for the
controls are 0:020 ± 0:600 and for the cases are −0:091 ± 0:605, and the empirical quartiles of the

controls are −0:228, 0.002 and 0.266 (IQR=0:494).

the absolute ln-Sa measurements, it ideally recovers information about the relative di�erences
between these measurements.

3.2. Analysis of the lowess adjusted ln-Sa data

As mentioned above, we wished to make inference to the risk of oesophageal cancer as a
function of the quartile categories of Sa levels among the population at large. To do so, we
need to estimate the population quartiles using the empirical quartiles of the measurements
for the controls only. We now compare the results below for logistic regression models that
use the empirical quartile categories created from the trend-contaminated ln-Sa data and from
the lowess adjusted ln-Sa data.
First, in addition to the notation of the previous section, we de�ne the following indicator

variables for each subject (i=1; : : : ; n) for the covariates for age, gender, smoking and drink-
ing, all determined at baseline. Let aij=1 if the ith subject’s age is between (i) 30 and 50
inclusive, (ii) 51 and 60 inclusive, and (iii) 61 to 69 inclusive for j=1; 2; 3, respectively,
and 0 otherwise; let gi=1 if the ith subject’s gender is female, and 0 if male; let si=1 if
the ith subject smoked for a total of 6 or more months at any time, and 0 otherwise; and let
di=1 if the ith subject drank any alcoholic beverage during the previous 12 months, and 0
otherwise.
Using the trend-contaminated ln-Sa data {x trendi }, we �t the following logistic regression

model:

logit(P{Yi=1})=�0 +
4∑

j=1
�jq trendij + �5ai2 + �6ai3 + �7gi + �8si + �9di (10)
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Table I. Parameter estimates, standard errors and odds ratios for the model of the risk of oesophageal
cancer as a function of the quartile categories computed from the trend-contaminated ln-Sa data.

Variable Symbol �j �̂j SE(�̂j) p-value OR 95 per cent CI for OR

Intercept 1 �0 −0:616 0.339 0.07
Quartile 2 qi2 �2 0.278 0.343 0.42 1.320 (0:674; 2:586)
Quartile 3 qi3 �3 −0:252 0.376 0.50 0.778 (0:372; 1:624)
Quartile 4 qi4 �4 −0:192 0.366 0.60 0.826 (0:403; 1:691)
Age [51,60] ai2 �5 −0:037 0.313 0.91 0.964 (0:522; 1:780)
Age [61,69] ai3 �6 −0:112 0.313 0.72 0.894 (0:484; 1:651)
Gender (f) gi �7 −0:487 0.405 0.23 0.614 (0:278; 1:359)
Smoking si �8 0.630 0.414 0.13 1.877 (0:833; 4:229)
Drinking di �9 0.356 0.345 0.30 1.427 (0:725; 2:807)

This table shows the parameters {�j} for model (1), and the corresponding estimates {�̂j}, standard errors
({SE(�̂j)}), p-values, odds ratios (ORs) {exp(�̂j)} and 95 per cent con�dence intervals (CIs) for the ORs
of the form {exp[�̂j ± 1:96SE(�̂j)]}. The LRT for the inclusion of the quartile categories gives G2 = 2:68 on
3 degrees of freedom (p-value = 0:44).

Table I shows the parameter estimates, standard errors, p-values, odds ratios (ORs) and
95 per cent con�dence intervals (CIs) for ORs for the terms in model (10). Thus, exp(�j)
gives the OR for the risk of oesophageal cancer for the jth quartile category of the ln-Sa
measurements compared to the �rst quartile category (j=2; 3; 4). The ORs for the quartile
categories are close to one and thus provide no evidence that Sa exposure increases the risk
of oesophageal cancer (all p-values¿0:42). Also, the LRT for the inclusion of the quar-
tile categories is not signi�cant at the 5 per cent level (G2 = 2:68, 3 d.f., p-value =0:44).
Furthermore, none of the covariates is a signi�cant predictor of the risk of oesophageal cancer.
By comparison, using the lowess adjusted ln-Sa data {xlowbi }, we �t the following logistic

regression model:

logit(P{Yi=1})=�0 +
4∑

j=1
�jqlowbij + �5ai2 + �6ai3 + �7gi + �8si + �9di (11)

Table II shows the parameter estimates, standard errors, p-values, ORs and 95 per cent CIs
for ORs for the terms in model (11). As before, the ORs for the second and third quartile
categories are very close to one (both p-values¿0:95), while the OR for the fourth quartile
category has decreased to 0.556 (p-value=0:12), opposite the expected direction, but still
insigni�cant. Next, the LRT for the inclusion of the quartile categories is still not signi�cant
at the 5 per cent level (G2 = 3:38, 3 d.f., p-value =0:34), although the p-value has decreased,
as expected. Furthermore, none of the covariates is a signi�cant predictor either. Thus, we
conclude from this study that Sa is not a useful predictor for oesophageal cancer. Indeed,
the fact that the original trends for the cases and controls are virtually identical in location
supports this conclusion (Figures 1 and 2).
As mentioned in the introduction, we were concerned about the e�ects of the apparent

outliers and gap on the analysis of the data. We therefore repeated the above analyses with
and without the nine outliers on days 23 and 24 and on various subsets of the data. In
particular, we examined the subsets of data after the gap (days 19–57) and after the both the
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Table II. Parameter estimates, standard errors and odds ratios for the model of the risk of oesophageal
cancer as a function of the quartile categories computed from the lowess adjusted ln-Sa data.

Variable Symbol �j �̂j SE(�̂j) p-value OR 95 per cent CI for OR

Intercept 1 �0 −0:528 0.326 0.11
Quartile 2 qi2 �2 0.014 0.343 0.97 1.014 (0:518; 1:989)
Quartile 3 qi3 �3 −0:021 0.349 0.95 0.979 (0:494; 1:942)
Quartile 4 qi4 �4 −0:587 0.380 0.12 0.556 (0:264; 1:172)
Age [51,60] ai2 �5 −0:052 0.312 0.87 0.949 (0:515; 1:751)
Age [61,69] ai3 �6 −0:129 0.315 0.68 0.879 (0:474; 1:629)
Gender (f) gi �7 −0:431 0.403 0.29 0.650 (0:295; 1:434)
Smoking si �8 0.639 0.414 0.12 1.895 (0:842; 4:268)
Drinking di �9 0.319 0.343 0.35 1.375 (0:702; 2:693)

This table shows the parameters {�j} for model (2), and the corresponding estimates {�̂j}, standard errors
({SE(�̂j)}), p-values, odds ratios (ORs) {exp(�̂j)} and 95 per cent con�dence intervals (CIs) for the ORs
of the form {exp[�̂j ± 1:96SE(�̂j)]}. The LRT for the inclusion of the quartile categories gives G2 = 3:38 on
3 degrees of freedom (p-value= 0:34).

gap and outliers (days 25–57). The results of these additional analyses were comparable to
those for the entire data set, which is not surprising since the main results of this study are
negative. It also suggests that lowess methods provide a su�ciently local smooth to the data
so as not to be signi�cantly a�ected by the odd features mentioned above. Since we had no
a priori reasons to exclude any data, we have reported the analyses on the entire data set in
this paper.
Also, in addition to the analyses reported here, we performed analyses with models that

included other covariates and interactions (particularly the age-by-gender interaction). None
of these additional models yielded signi�cant results either.

4. DESIGN AND RESULTS OF A SIMULATION STUDY

4.1. Parameter settings, generation of data and shapes of trends

We were concerned that the contaminating trend in the laboratory measurements had perhaps
obscured meaningful di�erences between the cases and controls, and we wished to determine
whether lowess methods could indeed recover these di�erences if they existed. We also rec-
ognize that the standard errors in the logistic regression equations (8) and (9) do not account
for the variation due to the estimation of the trend, which may potentially cause spuriously
high rejection rates. We therefore designed a simulation study to compare the use of logistic
regression with predictor variables de�ned by the quartile categories of the control data only.
Recall that the four logistic regression models de�ned in Section 2 use the uncontaminated
data (3), the trend-contaminated data (7), the lowess adjusted data computed using the controls
only (8), and the lowess adjusted data computed using both the cases and controls combined
(9). We considered sample sizes of (a) n0 = n1 = 100, (b) n0 = n1 = 200 and (c) n0 = 200 and
n1 = 100. In the motivating example, n0 = 182 and n1 = 98, which is closest to the last case.
We then set yi=0 for the �rst n0 observations and yi=1 for the last n1 observations.

Published in 2003 by John Wiley & Sons, Ltd. Statist. Med. 2003; 22:1477–1493



1486 C. B. BORKOWF, P. S. ALBERT AND C. C. ABNET

Next, we simulated the values of {x truei } as follows. If yi=0, we simulated an observation
x truei from the standard normal distribution (mean 0, variance 1), whereas if yi=1, we sim-
ulated an observation x truei from a normal distribution with mean �=0:0, 0.25 or 0.35 and
variance 1. Thus, the x-predictors are independent and identically distributed (i.i.d.) for the
controls and cases, separately.
We set d=50 in all simulations and randomly assigned n0=d controls and n1=d cases to

each day of analysis. Thus, either two or four cases and controls were analysed on each day.
The time-fractions of analysis, ti, were set in the middle of each day, so the analyses for days
j=1; 2; 3; : : : ; 50 occur at times t=(j − 0:5)=d=0:01; 0:03; 0:05; : : : ; 0:99.
In addition, we considered two models for the shape of the added trend, a step function

and a triangular function. The step function corresponds to a sudden perturbation, whereas the
triangular function allows for a change in the direction of the trend. One can de�ne a step
function with magnitude � and jump at t= � as

�step (t | �; �)= �I{�¡t61} (12)

Similarly, one can de�ne a triangular function with magnitude � and peak at t= � as

�tri(t | �; �)= �(t=�)I{06t6�}+ �[(1− t)=(1− �)]I{�¡t61} (13)

Note that when �=0 or 1, the triangular function simply gives a sloped line. The magnitudes
of these functions are relative to the standard deviation of the uncontaminated data, which
is 1. We then constructed the values of {x trendi } by equation (4).
Because the x-predictor is assumed to be i.i.d. given case-control status, the addition, es-

timation and removal of the three trends �(t);±�(t) ± � and ±�(1 − t) ± �, where � is any
constant displacement, will have the same impact on the estimation of {�j} (j=2; 3; 4), al-
though clearly the value of �0 will depend on ±�. Thus, without loss of generality, we only
consider below the addition of trends with positive magnitudes and with peaks or jumps on
the interval [0.5,1]. Speci�cally, we consider magnitudes �=1 and 2 for both the step and
triangular functions. For the step function, we consider jumps at �=0:5 and 0.75, while for
the triangular function, we consider peaks at �=0:5, 0.75 and 1.0 (a slope). Inferences for
other situations can be made by due alteration of details. By comparison, in the motivating
example, the trend appears to have a triangular shape with a peak at about �=19=57=0:33
and a magnitude of about �=2 (although it could also be modelled by a simple slope on
days 19–57 if the initial days and gap were excluded).
Next, we used standard lowess methods for trend estimation given by the S-Plus function

lowess (described above) with data-fractions of f=1=3; 1=2 and 2/3. We then computed the
lowess adjusted data {xlowci } and {xlowbi } using equations (5) and (6), respectively.

4.2. Numerical results for the simulation study

Tables III, IV and V show the simulated rejection rates for the LRT for the inclusion of
the quartile categories at the 10 per cent signi�cance level, G2¿�23;0:9 = 6:25, for sample sizes
of (a) n0 = n1 = 100, (b) n0 = n1 = 200, and (c) n0 = 200 and n1 = 100, respectively. The last
eight columns of these tables correspond to the following models and methods of analysis:
column 1, equation (3) with the uncontaminated data {x truei }; column 2, equation (7) with
the trend-contaminated data {x trendi }; columns 3–5, equation (8) with the lowess adjusted data
using the controls only {xlowci } and data-fractions of f=1=3, 1=2 and 2=3; columns 6–8,
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Table III. Simulated rejection rates for the LRT for the inclusion of the quartile categories for various
underlying distributions, trends and methods of analysis for sample sizes of n0 = n1 = 100 at the 10 per

cent signi�cance level.

� Trend parameters Method of analysis
x truei x trendi {xlowci } with f {xlowbi } with f

� � � 1=3 1=2 2=3 1=3 1=2 2=3

0.00 1 Step 0.50 0.105 0.086 0.121 0.111 0.106 0.103 0.100 0.100
Step 0.75 0.099 0.092 0.121 0.109 0.105 0.104 0.103 0.102

Triangular 0.50 0.104 0.097 0.117 0.107 0.102 0.105 0.100 0.102
Triangular 0.75 0.099 0.093 0.116 0.107 0.106 0.099 0.099 0.097
Slope 1.00 0.098 0.098 0.118 0.109 0.106 0.101 0.103 0.101

0.00 2 Step 0.50 0.101 0.063 0.116 0.100 0.096 0.095 0.089 0.089
Step 0.75 0.098 0.065 0.119 0.102 0.099 0.099 0.095 0.093

Triangular 0.50 0.096 0.077 0.115 0.107 0.103 0.102 0.101 0.101
Triangular 0.75 0.103 0.081 0.119 0.107 0.099 0.105 0.099 0.097
Slope 1.00 0.101 0.082 0.119 0.111 0.106 0.104 0.103 0.105

0.25 1 Step 0.50 0.362 0.293 0.374 0.359 0.357 0.365 0.356 0.354
Step 0.75 0.367 0.311 0.376 0.368 0.359 0.370 0.364 0.360

Triangular 0.50 0.370 0.340 0.380 0.373 0.369 0.377 0.376 0.368
Triangular 0.75 0.358 0.338 0.378 0.369 0.366 0.372 0.366 0.365
Slope 1.00 0.371 0.350 0.389 0.377 0.373 0.382 0.381 0.378

0.25 2 Step 0.50 0.358 0.152 0.357 0.337 0.322 0.347 0.339 0.318
Step 0.75 0.358 0.215 0.357 0.335 0.323 0.346 0.338 0.317

Triangular 0.50 0.371 0.278 0.393 0.382 0.374 0.382 0.379 0.373
Triangular 0.75 0.355 0.271 0.379 0.363 0.355 0.364 0.361 0.350
Slope 1.00 0.357 0.272 0.380 0.363 0.364 0.369 0.367 0.365

0.35 1 Step 0.50 0.591 0.498 0.598 0.586 0.577 0.593 0.586 0.579
Step 0.75 0.586 0.525 0.594 0.579 0.576 0.590 0.585 0.579

Triangular 0.50 0.587 0.560 0.593 0.585 0.591 0.596 0.596 0.592
Triangular 0.75 0.588 0.564 0.607 0.594 0.590 0.604 0.596 0.593
Slope 1.00 0.588 0.554 0.602 0.596 0.594 0.603 0.598 0.599

0.35 2 Step 0.50 0.582 0.274 0.570 0.555 0.534 0.572 0.553 0.534
Step 0.75 0.588 0.387 0.578 0.556 0.544 0.575 0.557 0.543

Triangular 0.50 0.591 0.468 0.605 0.595 0.592 0.599 0.595 0.588
Triangular 0.75 0.593 0.467 0.597 0.587 0.574 0.598 0.589 0.575
Slope 1.00 0.585 0.463 0.594 0.588 0.587 0.593 0.593 0.593

This table shows the simulated rejection rates for the LRT for the inclusion of the quartile categories for
sample sizes of n0 = n1 = 100 at the 10 per cent signi�cance level. The columns denote the eight methods
of analysis described in the text. The rows denote the means of the cases (�), the shapes of the trends (�,
step or triangular=slope), the magnitudes of the trends (�), and the locations of the jump for step trends and
the peak for triangular=slope trends (�). Note that the same simulated M =10 000 data sets were used to
calculate the rejection rates for all entries in the same row.

equation (9) with the lowess adjusted data using both the case and controls {xlowbi } and data-
fractions of f=1=3; 1=2 and 2=3. The row headings in these tables indicate the mean of the
cases (�=0:0; 0:25; 0:35; recall that the controls have mean zero), the magnitude of the trend
(�=1; 2), and the shape of the trend (step with jumps at �=0:5 and 0.75, triangular with
peaks at �=0:5; 0:75 and 1.0).
When the cases and controls have the same means (�=0), we observe that using the

uncontaminated data {x truei } gives rejection rates near the nominal value of 0.1. By comparison,
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Table IV. Simulated rejection rates for the LRT for the inclusion of the quartile categories for
various underlying distributions, trends and methods of analysis for sample sizes of n0 = n1 = 200 at the

10 per cent signi�cance level.

� Trend parameters Method of analysis
x truei x trendi {xlowci } with f {xlowbi } with f

� � � 1=3 1=2 2=3 1=3 1=2 2=3

0.00 1 Step 0.50 0.101 0.085 0.108 0.102 0.098 0.098 0.102 0.102
Step 0.75 0.105 0.091 0.110 0.104 0.103 0.104 0.102 0.102

Triangular 0.50 0.099 0.091 0.109 0.101 0.099 0.101 0.101 0.097
Triangular 0.75 0.099 0.095 0.111 0.108 0.104 0.104 0.103 0.099
Slope 1.00 0.101 0.093 0.110 0.102 0.104 0.102 0.101 0.102

0.00 2 Step 0.50 0.097 0.058 0.101 0.098 0.091 0.092 0.091 0.086
Step 0.75 0.097 0.069 0.099 0.091 0.089 0.089 0.093 0.086

Triangular 0.50 0.102 0.082 0.110 0.105 0.101 0.104 0.102 0.100
Triangular 0.75 0.099 0.082 0.113 0.104 0.097 0.097 0.102 0.095
Slope 1.00 0.104 0.080 0.111 0.109 0.107 0.108 0.107 0.109

0.25 1 Step 0.50 0.593 0.498 0.588 0.579 0.577 0.594 0.585 0.579
Step 0.75 0.605 0.538 0.605 0.600 0.594 0.606 0.596 0.591

Triangular 0.50 0.594 0.564 0.599 0.596 0.594 0.601 0.602 0.594
Triangular 0.75 0.597 0.565 0.598 0.598 0.596 0.599 0.598 0.596
Slope 1.00 0.595 0.572 0.607 0.601 0.602 0.604 0.603 0.599

0.25 2 Step 0.50 0.599 0.283 0.579 0.566 0.545 0.580 0.568 0.543
Step 0.75 0.601 0.395 0.589 0.573 0.559 0.584 0.568 0.560

Triangular 0.50 0.595 0.472 0.603 0.596 0.594 0.599 0.598 0.594
Triangular 0.75 0.597 0.472 0.599 0.589 0.581 0.601 0.590 0.579
Slope 1.00 0.588 0.478 0.600 0.593 0.593 0.597 0.598 0.596

0.35 1 Step 0.50 0.861 0.793 0.857 0.850 0.850 0.859 0.851 0.852
Step 0.75 0.865 0.819 0.863 0.860 0.858 0.866 0.865 0.864

Triangular 0.50 0.861 0.839 0.863 0.861 0.862 0.865 0.858 0.859
Triangular 0.75 0.858 0.837 0.860 0.859 0.858 0.862 0.858 0.857
Slope 1.00 0.860 0.838 0.858 0.855 0.857 0.861 0.859 0.859

0.35 2 Step 0.50 0.858 0.554 0.846 0.838 0.826 0.846 0.837 0.831
Step 0.75 0.860 0.681 0.844 0.836 0.829 0.846 0.836 0.827

Triangular 0.50 0.869 0.768 0.869 0.867 0.865 0.868 0.868 0.863
Triangular 0.75 0.862 0.773 0.862 0.860 0.846 0.861 0.859 0.848
Slope 1.00 0.871 0.780 0.868 0.868 0.869 0.874 0.874 0.874

This table shows the simulated rejection rates for the LRT for the inclusion of the quartile categories for
sample sizes of n0 = n1 = 200 at the 10 per cent signi�cance level. The columns denote the eight methods
of analysis described in the text. The rows denote the means of the cases (�), the shapes of the trends (�,
step or triangular=slope), the magnitudes of the trends (�), and the locations of the jump for step trends and
the peak for triangular=slope trends (�). Note that the same simulated M =10 000 data sets were used to
calculate the rejection rates for all entries in the same row.

using the trend-contaminated data {x trendi } gives subnominal rejection rates. The rejection rates
decrease more for step trends than for triangular or slope trends, and more for trends with
larger magnitudes (�=2 versus �=1). Conversely, using the lowess adjusted data {xlowci }
with f=1=3 tends to give supranominal rejection rates, especially for small sample sizes, so
this method should not be considered further. Furthermore, using the lowess adjusted data
{xlowci } with f=1=2 and 2=3 and {xlowbi } with f=1=3; 1=2 and 2=3 tends to give near nominal
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Table V. Simulated rejection rates for the LRT for the inclusion of the quartile categories for
various underlying distributions, trends and methods of analysis for sample sizes of n0 = 200 and

n1 = 100 at the 10 per cent signi�cance level.

� Trend parameters Method of analysis
x truei x trendi {xlowci } with f {xlowbi } with f

� � � 1=3 1=2 2=3 1=3 1=2 2=3

0.00 1 Step 0.50 0.102 0.094 0.109 0.104 0.104 0.106 0.102 0.102
Step 0.75 0.106 0.092 0.113 0.107 0.106 0.110 0.105 0.104

Triangular 0.50 0.104 0.098 0.112 0.108 0.106 0.108 0.103 0.107
Triangular 0.75 0.106 0.105 0.110 0.114 0.108 0.109 0.106 0.103
Slope 1.00 0.101 0.096 0.105 0.103 0.101 0.102 0.105 0.102

0.00 2 Step 0.50 0.105 0.063 0.108 0.102 0.096 0.104 0.100 0.098
Step 0.75 0.109 0.069 0.107 0.101 0.099 0.101 0.101 0.097

Triangular 0.50 0.104 0.076 0.109 0.103 0.100 0.107 0.104 0.099
Triangular 0.75 0.102 0.079 0.102 0.102 0.097 0.102 0.099 0.096
Slope 1.00 0.100 0.080 0.104 0.103 0.101 0.102 0.100 0.100

0.25 1 Step 0.50 0.449 0.358 0.453 0.445 0.439 0.458 0.448 0.442
Step 0.75 0.443 0.390 0.438 0.431 0.431 0.443 0.438 0.433

Triangular 0.50 0.456 0.422 0.458 0.456 0.453 0.464 0.458 0.459
Triangular 0.75 0.454 0.420 0.455 0.452 0.448 0.458 0.457 0.451
Slope 1.00 0.449 0.412 0.454 0.452 0.453 0.455 0.453 0.455

0.25 2 Step 0.50 0.454 0.195 0.434 0.416 0.402 0.438 0.421 0.403
Step 0.75 0.446 0.277 0.426 0.413 0.403 0.430 0.415 0.412

Triangular 0.50 0.447 0.339 0.458 0.454 0.453 0.457 0.460 0.452
Triangular 0.75 0.458 0.344 0.455 0.449 0.436 0.460 0.456 0.436
Slope 1.00 0.454 0.344 0.454 0.449 0.450 0.455 0.455 0.455

0.35 1 Step 0.50 0.710 0.622 0.709 0.706 0.702 0.712 0.710 0.704
Step 0.75 0.707 0.651 0.702 0.698 0.695 0.706 0.699 0.698

Triangular 0.50 0.710 0.676 0.706 0.706 0.708 0.711 0.710 0.709
Triangular 0.75 0.709 0.675 0.709 0.704 0.706 0.716 0.714 0.710
Slope 1.00 0.710 0.675 0.707 0.710 0.708 0.714 0.714 0.710

0.35 2 Step 0.50 0.706 0.378 0.688 0.675 0.658 0.692 0.678 0.664
Step 0.75 0.706 0.494 0.685 0.674 0.661 0.689 0.679 0.670

Triangular 0.50 0.703 0.579 0.704 0.699 0.696 0.704 0.702 0.699
Triangular 0.75 0.711 0.593 0.720 0.707 0.692 0.713 0.712 0.694
Slope 1.00 0.707 0.586 0.711 0.704 0.703 0.710 0.708 0.707

This table shows the simulated rejection rates for the LRT for the inclusion of the quartile categories for
sample sizes of n0 = 200 and n1 = 100 at the 10 per cent signi�cance level. The columns denote the eight
methods of analysis described in the text. The rows denote the means of the cases (�), the shapes of the
trends (�, step or triangular=slope), the magnitudes of the trends (�), and the locations of the jump for step
trends and the peak for triangular=slope trends (�). Note that the same simulated M =10 000 data sets were
used to calculate the rejection rates for all entries in the same row.

rejection rates, and note that the rejection rates tend to decrease slightly as the data-fraction
f increases.
Next, when the mean of the cases is greater than that of the controls (�=0:25; 0:35), using

the trend-contaminated data {x trendi } gives substantially lower power compared to using the
uncontaminated data {x truei }, as expected, since the presence of the trend tends to obscure dif-
ferences between the cases and controls. In particular, power decreases more for step trends
(especially with jumps at �=0:5), for trends with larger magnitudes, and for smaller sam-
ple sizes. Conversely, using the lowess adjusted data {xlowci } and {xlowbi } gives power levels

Published in 2003 by John Wiley & Sons, Ltd. Statist. Med. 2003; 22:1477–1493



1490 C. B. BORKOWF, P. S. ALBERT AND C. C. ABNET

Table VI. Simulated raw biases in the logistic regression estimates of �4 for various underlying
distributions, trends, and methods of analysis for sample sizes of n0 = n1 = 100.

� Trend parameters Method of analysis
x truei x trendi {xlowci } with f {xlowbi } with f

� � � 1=3 1=2 2=3 1=3 1=2 2=3

0.00 1 Step 0.50 −0:004 −0:001 −0:003 −0:002 −0:003 −0:002 −0:001 −0:002
Step 0.75 0.002 0.003 −0:001 0.002 0.002 0.001 −0:000 0.000

Triangular 0.50 −0:002 −0:002 −0:002 −0:001 0.000 −0:002 −0:002 −0:001
Triangular 0.75 0.005 0.007 0.004 0.005 0.004 0.005 0.005 0.006
Slope 1.00 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.000

0.00 2 Step 0.50 0.003 0.001 0.000 0.000 0.000 −0:001 0.001 0.001
Step 0.75 0.010 0.017 0.007 0.009 0.006 0.008 0.007 0.006

Triangular 0.50 0.002 0.003 0.002 0.003 0.003 0.001 0.001 0.002
Triangular 0.75 −0:000 0.002 0.001 −0:001 0.001 0.000 −0:001 −0:001
Slope 1.00 −0:001 −0:000 −0:002 −0:002 −0:002 −0:001 −0:002 −0:001

0.25 1 Step 0.50 0.008 −0:058 −0:026 −0:020 −0:015 0.011 0.005 0.002
Step 0.75 0.016 −0:033 −0:019 −0:013 −0:012 0.018 0.010 0.006

Triangular 0.50 0.016 −0:010 −0:018 −0:007 −0:001 0.022 0.020 0.018
Triangular 0.75 0.009 −0:018 −0:023 −0:012 −0:008 0.020 0.016 0.010
Slope 1.00 0.018 −0:005 −0:011 0.000 0.004 0.030 0.025 0.024

0.25 2 Step 0.50 0.014 −0:179 −0:038 −0:037 −0:042 0.001 −0:013 −0:028
Step 0.75 0.009 −0:122 −0:042 −0:041 −0:042 −0:004 −0:019 −0:025

Triangular 0.50 0.018 −0:074 −0:010 −0:001 0.004 0.028 0.024 0.018
Triangular 0.75 0.013 −0:078 −0:017 −0:010 −0:013 0.022 0.017 0.001
Slope 1.00 0.011 −0:077 −0:022 −0:011 −0:006 0.021 0.016 0.015

0.35 1 Step 0.50 0.021 −0:077 −0:024 −0:016 −0:013 0.026 0.019 0.010
Step 0.75 0.022 −0:044 −0:027 −0:019 −0:015 0.026 0.018 0.013

Triangular 0.50 0.020 −0:018 −0:024 −0:009 −0:002 0.032 0.027 0.023
Triangular 0.75 0.024 −0:016 −0:019 −0:003 0.001 0.037 0.031 0.024
Slope 1.00 0.025 −0:012 −0:023 −0:008 0.001 0.037 0.032 0.029

0.35 2 Step 0.50 0.011 −0:255 −0:059 −0:059 −0:068 −0:006 −0:027 −0:048
Step 0.75 0.020 −0:159 −0:048 −0:048 −0:049 0.002 −0:015 −0:028

Triangular 0.50 0.021 −0:102 −0:022 −0:007 −0:001 0.035 0.029 0.023
Triangular 0.75 0.017 −0:110 −0:030 −0:017 −0:022 0.028 0.019 0.001
Slope 1.00 0.019 −0:107 −0:024 −0:008 −0:001 0.031 0.028 0.027

This table shows the simulated raw biases in the logistic regression estimates of �4, namely
BIAS(�4)=E(�̂4) − �4, for sample sizes of n0 = n1 = 100. Note that �4 = 0:0; 0:636 and 0.892 for �=0:0,
0.25 and 0.35, respectively. The columns denote the eight methods of analysis described in the text. The
rows denote the means of the cases (�), the shapes of the trends (�, step or triangular=slope), the magnitudes
of the trends (�), and the locations of the jump for step trends and the peak for triangular=slope trends (�).
Note that the same simulated M =10 000 data sets were used to calculate the biases for all entries in the
same row.

comparable to those for using the uncontaminated data. Note also that the power decreases as
the data-fraction increases (f=1=3; 1=2; 2=3), particularly for step trends and for trends with
larger magnitudes. Additional simulations (not shown) show similar patterns in the rejection
rates for the LRT for the inclusion of the quartile categories at the 5 per cent signi�cance
level, G2¿�23;0:95 = 7:81, for the same sample sizes.
Table VI shows the simulated raw biases in the estimation of �4 for the same methods

of analysis and trends as in the previous tables with sample sizes of (a) n0 = n1 = 100. These
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biases should be interpreted in comparison with the true values �4 = 0:0; 0:636 and 0.892 for
�=0:0; 0:25 and 0.35, respectively. When the cases and controls have the same means (�=0),
we observe that all eight method described above give near zero biases. When the mean
of the cases is greater than that of the controls (�=0:25; 0:35), using the uncontaminated
data {x truei } gives negligible positive biases. By comparison, using the trend-contaminated
data {x trendi } gives substantial negative biases, which re�ects the fact that the estimates of
{�j} are attenuated towards zero. These biases are greater in absolute value for step trends
(especially with jumps at �=0:5) and for trends with larger magnitudes. Conversely, the
lowess adjusted data {xlowci } and {xlowbi } gives relatively small biases of either sign. Additional
simulations (not shown) for sample sizes of (b) n0 = n1 = 200 and (c) n0 = 200 and n1 = 100
show that the absolute biases in the estimation of �4 using the uncontaminated data were
proportionately smaller than those for (a) n0 = n1 = 100, whereas the absolute biases using the
trend-contaminated data and the lowess adjusted data were comparable for all sample sizes.
These simulations show that it may be valuable to examine carefully the nature of systematic

trends over time in continuous predictor data, especially when the cases and controls may have
a common trend. We recommend that one estimate the common trend by lowess methods
using both the cases and controls combined whenever the numbers of cases and controls are
(nearly) balanced on each day of analysis. We also generally recommend that one choose a
smaller data-fraction for step trends and a larger data-fraction for triangular trends, although
one should experiment with several values to determine the impact of this parameter on the
process of trend estimation and removal.

5. DISCUSSION

The analysis of the case-control study presented in this paper involved the estimation and
removal of a systematic trend over time from the predictor variable for sphinganine (Sa), a
biomarker of fungal toxin exposure. The ln-Sa measurements for the cases and controls both
had trends of approximately the same triangular shape and location. The underlying common
trend was assumed to depend on the day of HPLC analysis and not on the true Sa levels
themselves. We employed lowess methods to estimate and then remove this common trend
on the logarithmic scale, using both the cases and controls combined with a data-fraction
of f=2=3. We then categorized the lowess adjusted data by the empirical quartiles of the
adjusted controls. In turn, we constructed a logistic regression model to relate the risk of
oesophageal cancer to the quartile categories of the lowess adjusted ln-Sa measurements,
along with covariates for age, gender, smoking and drinking. We concluded that sphinganine
is not a useful predictor of the risk of oesophageal cancer. It is also reassuring that another
sphingolipid examined in the main study, sphingosine, was measured without trend and was
not a useful predictor of the risk of oesophageal cancer either [4].
In addition, we designed a simulation study to validate the use of lowess methods to es-

timate and then remove systematic trends over time from continuous predictor data when
the trends for the cases and controls have a common shape. We simulated data for hypo-
thetical case-control studies of various sample sizes, with various di�erences between the
means of the cases and controls, and with various shapes of contaminating trends over time.
We next used lowess methods with various data-fractions to estimate the trend using the
controls only and using both the cases and controls combined. These simulations show that
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performing logistic regression with the trend-contaminated data tends to give attenuated pa-
rameter estimates and lower signi�cance and power levels than using the uncontaminated data.
Conversely, performing logistic regression with the lowess adjusted data computed using both
the cases and controls combined with an appropriate data-fraction tends to give nearly unbi-
ased parameter estimates, near nominal signi�cance levels, and power comparable to that for
the uncontaminated data.
We have discussed the use of lowess methods to estimate and remove common systematic

trends over time from predictor variables in the context of case-control studies. More generally,
these methods could be applied in either prospective or retrospective studies to adjust either
predictor or response continuous variables contaminated by trends, before these variables are
transformed and used in regression models with linear or non-linear link functions. Moreover,
although the above simulations only examined the use of quartile category predictors without
other covariates, the ideas developed here easily extend to situations where the model includes
covariates (like the motivating example), provided that these covariates are independent of the
trend. Furthermore, one may also wish to explore the use of more advanced versions of lowess
to estimate systematic trends semi-parametrically using other covariates in addition to time.
These potential applications collectively make lowess methods powerful tools for removing
systematic trends from contaminated laboratory measurements, especially when standards or
quality control samples are unusable or unavailable for this purpose. Finally, if in addition
to a systematic trend over time, there exist other odd features in the data, such as gaps or
outliers, one must carefully consider the impact these features have on the process of trend
estimation and removal.
In terms of the broader methodological picture, careful consideration should be given to

statistical methods that employ empirical quantile categories rather than categories de�ned by
preset cutpoints. These empirically-based methods may occur in the context of regression, as
in the above example, or association, such as contingency tables with categories de�ned by
the empirical quantiles of the marginal data [9, 10]. These methods tend to be robust to many
types of measurement error, especially when greater con�dence exists in the relative ranks of
the measurements rather than in their absolute values. However, these methods may require
special variance estimation techniques and may entail a signi�cant loss of power, and thus the
advantages and disadvantages of their use in any particular application should be prudently
evaluated.
The �rst author, Dr C. B. Borkowf, can provide sample computer code written in the S-Plus

2000 programming language to perform the lowess calculations described in this paper.
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